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LETTER TO THE EDITOR 

Linear response theory of inter-quantum-well tunnelling in a 
double-well structure with in-plane magnetic fields 

S K Lyo and J A Simmons 
Sandia National Laboratories. Albuquerque. NM 87185, USA 

Received 9 March 1993 

AbskacL A linear response theory of incoherent tunnelling is presented and compared to 
data for the 2 v - 2 ~  inter-quantum-well conductance for a double-well srmmue with an entemal 
in-plane magetic field. The tunnelling conductance, calculated by evaluating the currml- 
current correlation function, shows resonances as a function of the magnetic field. The widths 
and heights of the resonance peaks depend sensitively on the intra-well scattering limes and 
temperature. Tunnelling occurs not only though the gmundsnergy sublevels but also though 
the higherenergy sublevels which can be impoRant at high temperatures. Using a diffeferential 
tmnsrrdssion-line model, analytic relationships between the source-drain conductance and the 
tunnelling conductance are derived. The h e a r e t i d  results yield reasonable a&~eement with the 
tunnelling conductance data obtained from this relationship. 

Tunnelling between two adjacent quasi-two-dimensional quantum wells (Qws) has received 
increasing attention recently not only for its academic interest but also for a potential device 
application. In spite of basic intuitive understanding [2] of existing experimental results 
[ 1.21, a rigorous theoretical treatment and a quantitative comparison of the theoretical result 
with the data are still lacking. The purpose of this paper is threefold. First, we establish 
a rigorous theory of tunnelling conductivity. Second, we develop a general theory for the 
relationship between the s o u r c d a i n  resistance and tunnelling conductance. We apply 
the result to two structures, one studied recently by Eisenstein, Gramila, Pfeiffer and West 
(EGPW) [Z] and the other to be discussed here. Finally, we compare our theory to tunnelling 
conductance data of our shucture obtained from the measured source-drain conductance 
through this relationship. Experimentally, two 150 A wide GaAs Q W s  are separated by a 
65 A Alo.~Gao.~As barrier. A 250 A wide IO'* Si-doped region is 450 A above the 
top well, while a 7 x IOl1 cm-* Si deltadoped layer lies 800 A beneath the bottom well. 
Tunnelling is controlled locally on a micron scale by using gates in our stmcture. 

In our linear response theory, the tunnelling conductance is calculated by evaluating 
the currenl-current correlation function. Electrons drift into the first QW (QWI), tuMel 
through the barrier into the second QW (QWZ) and then flow out of the second QW under 
the influence of a linear external DC electric field. The two QWs under study have two- 
dimensional electron densities N I ,  N2 with Fermi energies GIP, E= and Fermi wave numbers 
klF and k z ,  respectively. We consider widely separated Qws; the tunnelling integral J, is 
much smaller than the damping (r,) of the level so that electrons undergo many intra-well 
scattering events before tunnelling into the other well. Here K denotes a state label. 
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Before introducing our theory, we give a brief description of the underlying basic physics 
behind 2WZD tunnelling. The energy and momentum conservation conditions cannot be 
satisfied simultaneously in the case NI # N2, because the Fermi surfaces (i.e. circles) of 
QWl and QWZ have different radii (i.e. k l p  # kz~) and do not overlap. However, in the 
presence of an extemal in-plane magnetic field B (in the x-direction), the centre of the 
Fermi circle of QWZ shifts in the k = ( k x ,  k,) plane by an amount Aky E B relative to 
that of Q W I  [2,3]. As the field increases from B = 0, the two Fermi circles begin to 
touch each other from the inside of the larger circle at B = B-. Upon increasing the field 
further, the two Fermi circles cross each other until the field reaches B+ and the two Fermi 
circles begin to separate [Z]. Resonant tunnelling is possible only for fields in the range 
B- < B < B,. The tunnelling current, however, is not readily calculable by the golden 
rule, because, as will be shown later, the final result depends on the total scattering rates out 
of the resonance states in both QWs. Therefore, it is necessary to develop a formal theory 
that can properly incorporate the effect of scattering inside the QWs. Intra-well scattering 
of the electrons is due to elastic and inelastic collisions. We find that the tunnelling rate (as 
well as the ZL?-ZD conductance) depends sensitively on the intra-well scattering times. In 
OUT theory, tunnelling occurs not only through the ground-energy sublevels but also through 
the higher-energy sublevels which can be important at high temperatures because of their 
larger tunnelling integrals. 

Before studying the doubleQW stTucture, we first consider the effect of applying an 
in-plane magnetic field (in the x-direction) on the electronic energy in a single isolated QW. 
In this case, the Hamiltonian is given (in an effectivemass approximation) by 

H = @k,)’/Zm; + @‘/2m;)(kY - + &2m: + V ( z )  (1) 

where 1 = is the magnetic length, e is the electronic charge and m; (i = +, y. z) 
is the effective mass in the i-direction. The quantities li and c denote Planck’s constant 
divided by ZIT and the speed of light, respectively. The crystal momentum k is a good 
quantum number. In (1). V ( z )  is the confinement potential energy and p E  is the momentum 
operator. 

The eigenvalues of the Hamiltonian in (1) were studied earlier by Lyo and Jones (U) 
[4] and we review some of its properties briefly in the following. In order to provide some 
insight for the solution of (1). it is useful to consider the special case of a parabolic QW with 
V ( z )  = fm;o:(z - z#, where mi and WO are constants with units of mass and angular 
frequency and a is the centre of the potential. In this case, the net effect of the magnetic 
field on the energy eigenvalue is to renormalize 00 into s2 = A ~ Q  and m; into M: = h2m; 
where h2 = 1 + (my/ml)(oc/oo)2 and o, is the cyclotron frequency o, = eB/m;c [4]. 
Also, z is replaced by in the second term of (1). The second term in h2 reflects mixing 
between the sublevels and the field-induced z-dependent terms and is proportional to the 
square of the ratio of the representative energies, namely the cyclotron energy and the 
field-free sublevel energy separation (boo). The magnetic field pushes the centroid of the 
harmonic confinement wavefunction toward the interface of the QW [4]. It was found by 
w that the enhancement factor A is very close to unity and the field-induced shift of the 
centroid of the wavefunction is negligibly small, unless the field is extremely high and the 
QW is very wide and shallow [4]. A very similar conclusion was drawn for square QWs 
to be considered here [4]; the energy dispersion in the y-direction is nearly parabolic with 
very small mass enhancement in the range of the field and for the QW struchm of interest 
in this work. Also, field-induced mixing between ky and the sublevels is small. 

In the following analysis, we assume an isotropic in-plane mass m*. We also assume 
that both Q w s  have the same effective mass. A tight-binding model is adequate for studying 
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incoherent tunnelling between two widely separated QWs. The Hamiltonian of a doubleQw 
structure is then given from the preceding analysis by 

(2) 

where K = (k, U). U is the sublevel index and aiz(a.,) indicates the creation (annihilation) 
operator in the nth QW. The dependence of the tunnelling integral J, on k and the magnetic 
field will be neglected in view of the discussion in the previous paragraph. The electron 
energy is given by 

'H = E(6iralnair t + ~ur&az~ + J&,ak + akai,)) +'Hint 
Y 

where k = [kl, Ak, = d/12 and d is the centreto-centre distance between the Qws. The 
quantity An" indicates the relative energies of the sublevels and is determined from NI and 
Nz. Finally, the last term in (2) describes elastic and inelastic interactions responsible for 
intra-QW scattering. 

The tunnelling conductivity is given from the linear response theory [5] by 

and ,5 = (ksT)- ' .  Here ks is Boltzmann's constant and T the temperature. The quantity 
hw, is defined on the imaginary axis as hw, = k i r p - '  and is analytically continued to just 
above the real axis: h o  + io or io as i n  (4). The vetocity operator in (6) is given by 

ii = [i, x]/i i  = (J,d/ih)(a:,aa -&alx). (7) 

Here i is the position operator given by i = Z I U : ~ ~ I ~  +ZZC&Z,, where ZI and zz(' ZI + d )  
are the positions of the centre of the two QWs assumed to be symmetric. 

The conductivity o;, is evaluated using a temperatureordered Green function technique 
[6]; the main contribution to the velocity correlation function FQo,) is given, to the 
lowest order in r n F / E n P ,  by the bubble diagram shown in figure 1. Here r,,F is the damping 
at the Fermi circles. The vertex correction is small when E I F  - EZF >> rnF as in our 
case. In figure 1, the wiggly directed lines indicate the external-field vertices signifying the 
tunnelling velocity vz = J,d/h and the full curves represent dressed fermion propagators 
in QWl (directed downward) and QWZ (directed upward) given by 

G d C d  = IC! - 6°K - snml-' = 1.2 (8) 
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where Cr = (21 + 1)rrig-’ + p,, 1 is an integer, /I the chemical potential and S&) is the 
self-energy part. The self-energy arises from the last term in (2). The velocity correlation 
function F@w,) is then given by 

W O , )  = -(4dz/Bhz) ~ J % ~ ( C / ) % ( t /  +hw,)  (9) 
/r 

which includes a factor of two arising from the spin degeneracy and a minus sign arising 
from closing the fermion loop. The spin splitting is neglected. The I-summation in (9) is 
performed on a complex plane [6]. Inserting (9) in (4), we obtain 

where 

and f‘(<) is the first derivative of the Fermi function f(<). Im denotes the imaginary part 
of the quantity that follows and SnK(t - io) = En,(<) -I- irnK(<). For a later numerical 
evaluation, we approximate 

pnK n. (l/JdrnF/[e - c n d 2  + r 2  n = 1.2 ( 1 W  

at low temperatures neglecting the small quasi-particle renormalization (i.e. the real part of 
the self-energy) and assuming that only the ground sublevels are populated. In the present 
work, application is made to the data at 0.3 K << E&’, where tunnelling occurs mainly 
through the ground-energy sublevels. The damping rn&) has been studied by a number 
of authors in the past in QWs for elktic scattering, electron-phonon scattering and also for 
electron-electron scattering [7]. At low temperatures, the only major contribution to the 
damping arises from elastic scattering. 

Figure 1. Basic bubble diagram for the velocity correlation function. The mows indicate the 
Bw, of momentum (k) and energy parameters (<,. ho,). 

In order to relate uzz to the sourcedrain resistance, we consider a differential 
transmission-line model for the two smctures illustrated in figure 2, where the top full 
line indicates QWZ and the bottom full line Qwl. In structure (a), the current enters QWl 
and QWz at n = 0 and flows out of both QWs at the other end. The gate (denoted by a 
shaded square) on the top QW is biased and blocks the current in the top QW. The wiggly 
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Structure ( a )  - v,,, M x )  .r= 

Structure (b) 

Figure 2. Trmsmission-line model for two tunnelling stmctures considered. 

lines indicate the tunnelling current. In structure (b) studied recently by EGPW [Z], the 
current drifts into the left-hand end of Q w 2  and flows out of the right-hand end of Q w l .  
The sourcddrain resistance in strncture (a) consists of the sum of three contributions: 
RSD = RSG + Re + ROD. Here RsG is the resistance from the source (at x = 0) to the 
left-hand end of the gate (at x = L), RO is the conaibution from the region under the gate 
in the bonom QW only and RGD is the contribution from the right-hand end of the gate to 
the drain. We will consider only R ~ G  in the following. The tunnelling resistance in the S 4  
region is given by Rzz = d / ( &  uzz), where SSC is the area in the S-G region. For structure 
(b), we calculate the total resistance from the source (at x = 0) to the drain (at x = L). In 
this case, the tunnelling resistance is given by RzL = d/(Suzz). 

Designating the current as fT(X)(I&)) and the voltage as VT(X)(VB(~)) for the top 
(bonom) wire and using the current conservation I = IT(x)+~B(x), we obtain the following 
coupled differential equations: 

I,(x) = -(l/'&)dVa(x)/& (Y = T, B (1W 
dh(.(x)/h = -dfB(x)/d. = -(l/%&(VdX) - VB(~)) (W 

where RT (RE) is the resistance per unit length in the top (bonom) wire, L is the total 
effective length of the wires and RZz = R,/C. A general solution of these equations is 
given by 

V,(x) = ['%&s,/(RT + RB)](CI cosh(qx) + cz sinh(qx)) + c3X (13) 

where .q = 1, SB = -1, q = L-'[RT+RB)/R,,]''' and cis are constants to be determined 
by the boundary conditions. 

The boundary conditions are given by VT(O) = VB(O) = 0, I&) = 0 for structure (a) 
and l ~ ( 0 )  = 0, I&) = 0 for structure (b). Also, the current conservation condition applies 
to both strnctures. The resistances are then given by 

(Y = T, €3 

structure (a) (14a) 
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Equations (14a) and (14b) yield RSG = C R B ,  and Rso = R,,, respectively, in the limit 
qL << 1 (i.e. RT + RB << Rzz) as expected. The QWS studied by EGPW [2] have high 
mobilities and yield RSD = Ru. The tunnelling resistance R,, enters (14a) and (14b) only 
through the factor q .  For smcture (a), the total sourcedain resistance RSD is the sum of 
RSG, RG and RGD. The latter is obtained in a similar way from (14a). The quantify Ro is 
small. 

':."-! U 

P 5 

0 

0 2 4 6 

0 2 4 6 

Magnelic Field (T) 

Figure 3. The tunnelling conductance per area G, = ca/d determined froom the observed 
source-dnin resistance (a) and theory (b). The tunnelling conductance per unit area is also 
plotted for zero damping at several temperatures (e) .  

In figure 3(a), we plot the total tunnelling conductance per area of the QW (G, = u,/d) 
determined from the observed values of RSD at 0.3 K using (14a). A detailed description of 
the experiment will be presented elsewhere 181. The resistances of the top and bottom QWS 
equal 0.77 kQ and 4.93 kQ for these data, respectively. For comparison with the theory, 
the following experimentally determined parameters are used. The area and the centre-to- 
centre separation of the QWS are S = 15 p m  x 2 pm = 3 x lo-' cmz and d = 215 A. 
The densities and the mobilities of the bottom and top QWS are NI = 1.74 x 10" c&, 
NZ = 0.95 x 10" and p~ = 6 x lo4 cm2 V-' s-l, pz = 6 x lo5 cm2 V-' s-l, 
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respectively. It follows that r1 is about ten times larger than r2. In this case (i.e. r2 << rl), 
we can simplify the expression in (10) using & 2: S(< - E&) for (1 Ib), where S ( x )  is the 
Dirac delta function. As a result, the tunnelling conductance becomes independent of r2. 

The theoretical tunnelling conductance per area is displayed as a function of the magnetic 
field in figure 3(&) for rl = 0 meV, rl = 0.3 meV and rl = 1 .O meV, using m* = 0.067mo 
(mo is the free electron mass) and JI = 0.04 meV. This value of the tunnelling integral 
is in the neighbourhood of 51 = 0.03 meV estimated by calculating the energy repulsion 
between the ground sublevels of the two Qws from OUT doublewell structure. The minimum 
of rl for the mobility pl = 6 x lo4 cm2 V-I s-l e quals 0.15 meV for isotropic scattering 
and corresponds to the scattering time 7 = 2.3 x 10-l' s. It is seen in figure 3(b) that both 
of the sharp peaks at r, = 0 are smeared out by the damping effect. These peaks have 
long Lorentzian tails and are different from what is expected from thermal broadening. In 
figure 3(c), we plot the theoretical conductance per area as a function of  the magnetic field 
at several temperatures for zero damping (i.e. rl = r2 = 0) using the same values for the 
rest of the parameters as in figure 3(b); thermal broadening yields a very (i.e. exponentially) 
short tail for the low-field peak at temperatures comparable to the energies of the damping 
parameters employed for figure 3@). 

For the special case of zero damping and zero temperature, the field dependence of uzz 
is simply given from (10) by U= = C(l - u)-~/ 'B- '  for U < 1 and uz2 = 0 for U > 1, 
where 

U = [ d P  + d- 1 2  1 ( k i p  2 - k ; F ) ] 2 / ( 8 ~ N ~ )  

and 

C = em"cJ2/(nR4). 

Here J is the tunnelling integral between the ground sublevels. The conductance per unit 
area is shown in this case by the long-dashed curves in figures 3(b) and 3(c) and is non- 
vanishing only in the range of the fields B- < B < B+. The turn-on (B-)  and turn-off 
( E + )  fields are given by the solutions of U = 1: 

B+ = hc&(&zk &)/ed = I6.505(&f &)d-' 

where N,(N,) is the larger (smaller) of N I  and Nz.  For the last equality, N I  and NZ are 
in units of 10l2 cm-' and B and d are, respectively, in units of Tesla and 100 A. The 
densities N I  and Nz can therefore be determined from the turn-on and tum-off fields. 

In summary, we presented a linear response theory of 2D-20 incoherent tunnelling 
and compared to tunnelling conductance data in a double-quantum-well structure in the 
presence of external in-plane magnetic fields. The tunnelling conductivity was calculated 
by evaluating the current-current correlation function. The conductance exhibits resonances 
as a function of the magnetic field. The widths and the heights of the resonance peaks depend 
sensitively on the intra-well scattering times and the temperature. The theory incorporates 
tunnelling not only through the ground-energy sublevels but also through the higherenergy 
sublevels which can be important at high temperatures. Using a differential transmission- 
line model, a useful analytic relationship between the source-drain conductance and the 
tunnelling conductance was derived. Tunnelling conductance data were obtained from the 
observed sourcwlrain resistance as a function of the magnetic field using this relationship. 
The conductance data yield reasonable agreement with the theoretical results. 

This work was supported by the Division of Materials Science, Office of Basic Energy 
Science, US DOE under Contract No DE-AC04-76DP00789. 
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